Optimization of Fuzzy Control for Magnetorheological Damping Structures

Author:

Ding Jianguo1,Sun Xin2,Zhang Lifeng1,Xie Jiaoyan1ORCID

Affiliation:

1. School of Science, Nanjing University of Science and Technology, Nanjing, China

2. Guang’an Municipal Bureau of Housing and Urban-Rural Development, Sichuan, China

Abstract

Due to the influence of nonlinearity and time-variation, it is difficult to establish an accurate model of a magnetorheological damping structure that adopts semiactive control. Fuzzy control is a relatively appropriate control method, but fuzzy control design is susceptible to human subjective experience, which will decrease the control effect. This paper proposes new fuzzy control rules based on a genetic algorithm (GA) and particle swarm optimization (PSO) and performs a numerical simulation for a three-layer reinforced concrete frame structure under conditions of an uncontrolled structure, fuzzy control, fuzzy control optimized by GA, fuzzy control optimized by PSO, and GA-optimized FLC control (GA-FLC) proposed by Ali and Ramaswamy (2008). The results show that (1) the fitness values of the convergence of the two types of optimized fuzzy control are close. The speed of the convergence of the fuzzy control optimized by PSO is faster than that of the fuzzy control optimized by GA, but its running speed is slower. (2) Comparing the acceleration and displacement of the structure under the conditions of three different seismic waves, the effect of the optimized fuzzy control is better than that of the human experience fuzzy control and GA-FLC.

Funder

Science Challenge Project of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3