Differentially Expressed Genes in Nasopharyngeal Carcinoma Tissues and Their Correlation with Recurrence and Metastasis of Nasopharyngeal Carcinoma

Author:

Yue Haiying1,Zhu Huijun1,Luo Danjing1,Du Qinghua1,Xie Yiting1,Huang Sijie1,Liu Wenqi1ORCID

Affiliation:

1. Department of Radiotherapy, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China

Abstract

In this study, bioinformatics tools were used to identify key genes to study the molecular mechanism of nasopharyngeal carcinoma (NPC) development and to explore the correlation of these key genes with the recurrence and metastasis of NPC. The GSE61218 microarray dataset obtained from the Gene Expression Omnibus Database (GEO) was used. The limma R package was used to screen differentially expressed genes (DEGs) between NPC and normal nasopharyngeal (NP) tissues. KEGG functional enrichment was performed on these selected DEGs. Protein-protein interaction (PPI) networks were constructed using Cytoscape software to identify key node proteins. The NPC-metastasis microarray dataset GSE103611 was obtained from GEO to analyze the expression of DEGs in NPC metastasis. A total of 239 DEGs were identified. DEGs were mainly enriched in oocyte maturation-related pathways, cytokine-related pathways, cell cycle-related pathways, cancer-related pathways, and homologous recombination-related pathways. In addition, the top 10 nodes with the higher degree in the DEG PPI network were as follows: CDK1, CCNB2, BUB1, CCNA2, AURKB, BUB1B, MAD2L1, NDC80, BIRC5, and CENPF. The results indicated that DEGs may be involved in the pathogenesis of NPC by regulating cell cycle and mitosis, which can be used as molecular biomarkers for the diagnosis of NPC. In addition, we identified 87 DEGs with FC > 2 and P < 0.01 from the metastasis spectrum of NPC. The intersection gene between DEGs of NPC and normal NP tissue samples and those of the metastatic spectrum of NPC was identified to be VRK2. The expression of VRK2 in NPC samples was significantly higher than that in normal NP tissue, and similarly, VRK2 expression was significantly upregulated in metastatic samples compared with nonmetastatic samples ( P < 0.05 ). Therefore, VRK2 may be a biomarker for predicting the metastasis of NPC patients after treatment.

Funder

Guangxi Health Commission

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3