Parameter Estimation of the Photovoltaic System Using Bald Eagle Search (BES) Algorithm

Author:

Nicaire Ndongmo Fotsa1ORCID,Steve Perabi Ngoffe1,Salome Ndjakomo Essiane12,Grégroire Abessolo Ondoua3

Affiliation:

1. Laboratory of Applied Science Technology (LTSA), University of Douala, Cameroon

2. Higher Technical Teacher Training College of Ebolowa, University of Yaounde 1, Cameroon

3. Ecosystems and Fisheries Resources Laboratory, University of Douala, Cameroon

Abstract

The global demand for renewable energy is growing, and one of the proposed solutions to this energy crisis is the use of photovoltaic systems. So far, they are a reliable solution, as they are nonpolluting and can be used almost anywhere on the planet. However, the design and development of more efficient photovoltaic cells and modules require an accurate extraction of their intrinsic parameters. Up to date, metaheuristic algorithms have proven to be the best methods to obtain accurate values of these intrinsic parameters. Hence, to extract these parameters reliably and accurately, this paper presents an optimization method based on the principle of bald eagle search (BES) during fish hunting. This search is divided into three steps: in the first stage (space selection), the eagle selects the space with the largest number of prey; in the second stage (space search), the eagle moves into the selected space to search for prey; in the third stage (dive), the eagle swings from the best position identified in the second stage and determines the best point to hunt. Thus, we used the proposed BES algorithm to determine the parameters of the single-diode model (SDM), the double-diode model (DDM), and the PV modules. This algorithm converges very quickly and gives a root mean square error (RMSE) of 9.8602 e 04 for the single-diode model and 9.8248 e 4 for the dual-diode model. The results obtained show that the proposed algorithm is more efficient than the other methods available in the literature, in terms of the better accuracy of the results obtained. The good harmony of the I-V and P-V characteristic curve of the calculated parameters with that of the measured data from a PV module/cell data sheet proves that the proposed BES should be used among the methods provided in the literature for the identification of PV solar cell parameters.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3