Electrophysiological Changes of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes during Acute Hypoxia and Reoxygenation

Author:

Häkli Martta1ORCID,Kreutzer Joose23ORCID,Mäki Antti-Juhana2ORCID,Välimäki Hannu2ORCID,Cherian Reeja Maria1ORCID,Kallio Pasi2ORCID,Aalto-Setälä Katriina14ORCID,Pekkanen-Mattila Mari1ORCID

Affiliation:

1. Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland

2. Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33720, Finland

3. BioGenium Microsystems Oy, Tampere 33720, Finland

4. Heart Hospital, Tampere University Hospital, Tampere 33520, Finland

Abstract

Ischemic heart disease is the most common cardiovascular disease and a major burden for healthcare worldwide. However, its pathophysiology is still not fully understood, and human-based models for disease mechanisms and treatments are needed. Here, we used human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to model acute ischemia-reperfusion in our novel cell culture assembly. The assembly enables exchange of oxygen partial pressure for the cells within minutes, mimicking acute ischemic event. In this study, hypoxia was induced using 0% O2 gas for three hours and reoxygenation with 19% O2 gas for 24 hours in serum- and glucose-free medium. According to electrophysiological recordings, hypoxia decreased the hiPSC-CM-beating frequency and field potential (FP) amplitude. Furthermore, FP depolarization time and propagation slowed down. Most of the electrophysiological changes reverted during reoxygenation. However, immunocytochemical staining of the hypoxic and reoxygenation samples showed that morphological changes and changes in the sarcomere structure did not revert during reoxygenation but further deteriorated. qPCR results showed no significant differences in apoptosis or stress-related genes or in the expression of glycolytic genes. In conclusion, the hiPSC-CMs reproduced many characteristic changes of adult CMs during ischemia and reperfusion, indicating their usefulness as a human-based model of acute cardiac ischemia-reperfusion.

Funder

Pirkanmaa Hospital District

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3