A Prediction Method for Floor Water Inrush Based on Chaotic Fruit Fly Optimization Algorithm–Generalized Regression Neural Network

Author:

Zhu Zhijie12ORCID,Sun Chen1,Gao Xicai2ORCID,Liang Zhuang3

Affiliation:

1. School of Mining, Liaoning Technical University, Fuxin, China

2. State Key Laboratory of Coal Resources in Western China, Xi’an University of Science and Technology, Xi’an, China

3. Research Centre, Ministry of Emergency Management, China

Abstract

The research was aimed at predicting floor water-inrush risk in coal mines and forewarn of such accidents to guide safe production of coal mines in practice. To this end, a prediction method for floor water inrush combining the chaotic fruit fly optimization algorithm (CFOA) and the generalized regression neural network (GRNN) is proposed. Floor water inrush is predicted by virtue of the robust nonlinear mapping capability of the GRNN. However, because the prediction effect of the GRNN is influenced by the smoothing factor, the CFOA is adopted to optimize this factor. In this way, influences of human factors during parameter determination of the GRNN prediction model are decreased, and the prediction accuracy and applicability of the model are improved. Results show that the CFOA–GRNN prediction model has an accuracy of 93.2% for whether floor water inrush will occur or not. Compared with the BPNN, RNN, and GRU network prediction model, the CFOA–GRNN model is superior in the prediction accuracy and generalization, and it can more accurately predict floor water inrush.

Funder

State Key Laboratory of Coal Mining and Clean Utilization

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3