History Matching of a Channelized Reservoir Using a Serial Denoising Autoencoder Integrated with ES-MDA

Author:

Kim Sungil12,Min Baehyun13ORCID,Kwon Seoyoon13,Chu Min-gon1

Affiliation:

1. Center for Climate/Environment Change Prediction Research, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea

2. Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, Republic of Korea

3. Department of Climate and Energy Systems Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea

Abstract

For an ensemble-based history matching of a channelized reservoir, loss of geological plausibility is challenging because of pixel-based manipulation of channel shape and connectivity despite sufficient conditioning to dynamic observations. Regarding the loss as artificial noise, this study designs a serial denoising autoencoder (SDAE) composed of two neural network filters, utilizes this machine learning algorithm for relieving noise effects in the process of ensemble smoother with multiple data assimilation (ES-MDA), and improves the overall history matching performance. As a training dataset of the SDAE, the static reservoir models are realized based on multipoint geostatistics and contaminated with two types of noise: salt and pepper noise and Gaussian noise. The SDAE learns how to eliminate the noise and restore the clean reservoir models. It does this through encoding and decoding processes using the noise realizations as inputs and the original realizations as outputs of the SDAE. The trained SDAE is embedded in the ES-MDA. The posterior reservoir models updated using Kalman gain are imported to the SDAE which then exports the purified prior models of the next assimilation. In this manner, a clear contrast among rock facies parameters during multiple data assimilations is maintained. A case study at a gas reservoir indicates that ES-MDA coupled with the noise remover outperforms a conventional ES-MDA. Improvement in the history matching performance resulting from denoising is also observed for ES-MDA algorithms combined with dimension reduction approaches such as discrete cosine transform, K-singular vector decomposition, and a stacked autoencoder. The results of this study imply that a well-trained SDAE has the potential to be a reliable auxiliary method for enhancing the performance of data assimilation algorithms if the computational cost required for machine learning is affordable.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3