Sulphuric Acid-Modified Coal Fly Ash for the Removal of Rhodamine B Dye from Water Environment: Isotherm, Kinetics, and Thermodynamic Studies

Author:

Balji G. Bharath1ORCID,Kumar P. Senthil2ORCID

Affiliation:

1. Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India

2. Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry 605014, India

Abstract

Among the wide variety of dyes present in the environment, cationic dyes are more toxic and have complex structure. The adsorption process of rhodamine B dye was successfully carried out by sulphuric acid-treated inexpensive modified fly ash (MFA) adsorbent via batch experiments. The nature of the adsorbent was characterized by techniques, namely, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The maximum removal efficiency of RhB dye was found to be 99.78% by using 0.5 g of adsorbent dosage in 50 mg/L of dye concentration. The SEM images displayed the porous nature of the adsorbent where the EDS analysis displays the elemental compositions present in the adsorbent. XRD pattern shows the crystallinity nature of the adsorbent. Among the batch study parameters, effect of pH plays an important role in the adsorption process. The pH of 4 was found to be an ideal setting for the efficient removal of the dye RhB. The preferable elimination ability was found by keeping the dosage at 5 g/L, contact time 120 min, and dye concentration at 50 mg/L. Adsorption capacity was found to be 36.36 mg/g. This shows the ability of the MFA for the removal of wastewater contaminants. This adsorption process is well suited for the Freundlich isotherm, which displaces the process as a multilayer adsorption. Studies in kinetics and thermodynamics demonstrate that the process was well suited for its exothermic nature and pseudo-second-order. Thermal regeneration studies were carried out, and the adsorbent was effectively recycled and utilized up to four more times with minimal loses in its effectiveness. Therefore, from these obtained results, it is clear that the MFA is an effective adsorbent for the effective removal of dyes from wastewater.

Publisher

SAGE Publications

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3