Detection of Severe Respiratory Disease Epidemic Outbreaks by CUSUM-Based Overcrowd-Severe-Respiratory-Disease-Index Model

Author:

Polanco Carlos12ORCID,Castañón-González Jorge Alberto1,Macías Alejandro E.2,Samaniego José Lino13,Buhse Thomas4,Villanueva-Martínez Sebastián2ORCID

Affiliation:

1. Facultad de Ciencias de la Salud, Universidad Anáhuac, Avenida Universidad Anáhuac No. 46, Col. Lomas Anáhuac, 52786 Huixquilucan, MEX, Mexico

2. Subdirección de Epidemiología Hospitalaria y Control de Calidad de la Atención Médica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Piso 4, Col. Sección XVI, DF, México 14000, Mexico

3. Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México. Cd. Universitaria, DF, México 04510, Mexico

4. Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, 62209 Cuernavaca, MOR, Mexico

Abstract

A severe respiratory disease epidemic outbreak correlates with a high demand of specific supplies and specialized personnel to hold it back in a wide region or set of regions; these supplies would be beds, storage areas, hemodynamic monitors, and mechanical ventilators, as well as physicians, respiratory technicians, and specialized nurses. We describe an online cumulative sum based model named Overcrowd-Severe-Respiratory-Disease-Index based on the Modified Overcrowd Index that simultaneously monitors and informs the demand of those supplies and personnel in a healthcare network generating early warnings of severe respiratory disease epidemic outbreaks through the interpretation of such variables. Apost hochistorical archive is generated, helping physicians in charge to improve the transit and future allocation of supplies in the entire hospital network during the outbreak. The model was thoroughly verified in a virtual scenario, generating multiple epidemic outbreaks in a 6-year span for a 13-hospital network. When it was superimposed over the H1N1 influenza outbreak census (2008–2010) taken by the National Institute of Medical Sciences and Nutrition Salvador Zubiran in Mexico City, it showed that it is an effective algorithm to notify early warnings of severe respiratory disease epidemic outbreaks with a minimal rate of false alerts.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Uso de Localizadores de Venas 3d Fdm por Médicos Internos de Pregrado;Estudios y Perspectivas Revista Científica y Académica;2024-03-29

2. Assessing the Disruption Impact on Healthcare Delivery;Journal of Primary Care & Community Health;2024-01

3. The impact of travel on respiratory epidemic disease;International Conference on Modern Medicine and Global Health (ICMMGH 2023);2023-09-07

4. Disaster and Pandemic Management Using Machine Learning: A Survey;IEEE Internet of Things Journal;2021-11-01

5. Sistema de vigilancia de infecciones graves con potencial epidémico basado en un modelo determinístico-estocástico, el StochCum Method;Cirugía y Cirujanos;2021-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3