Analysis of Performance Degradation Introduced by Radome for High-Precision GNSS Antenna

Author:

Liu Jinyuan1ORCID,Li Lixun1,Zuo Yong1ORCID,Chen Huaming1,Ni Shaojie1ORCID

Affiliation:

1. College of Electronic Science and Technology, National University of Defense Technology, China

Abstract

High-precision global navigation satellite system (GNSS) antennas employed on the fixed ground station are usually equipped with radomes, which are potential in yielding degradation of key parameters of antenna such as axial ratio and gain. This paper presents a study on the deterioration of high-precision GNSS antenna caused by the radome using electrically EM simulations including comparison of different geometries, materials, and heights of radome. Based on the study, an optimized radome model is proposed to minimize the axial ratio and gain degradation of antenna. Finally, a prototype of proposed radome is fabricated and measured. A good agreement between simulated and measured results evidently illustrates that the geometry, material, and height of radome are set appropriately.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Implementation of a Streamlined Radome;The Journal of Korean Institute of Information Technology;2023-12-31

2. Radome Enclosed Circularly Polarized Antenna System with Enhanced Beamwidth;Radioengineering;2022-04-14

3. Permittivity Determination Method for Multilayer Automotive Coatings for Radar Applications at 77 GHz;IEEE Transactions on Microwave Theory and Techniques;2022-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3