Affiliation:
1. Beijing Jiaotong University, China
2. Macquarie University, Australia
3. Australian Taxation Office, Sydney, NSW 2000, Australia
Abstract
With the surging demand on high-quality mobile video services and the unabated development of new network technology, including fog computing, there is a need for a generalized quality of user experience (QoE) model that could provide insight for various network optimization designs. A good QoE, especially when measured as engagement, is an important optimization goal for investors and advertisers. Therefore, many works have focused on understanding how the factors, especially quality of service (QoS) factors, impact user engagement. However, the divergence of user interest is usually ignored or deliberatively decoupled from QoS and/or other objective factors. With an increasing trend towards personalization applications, it is necessary as well as feasible to consider user interest to satisfy aesthetic and personal needs of users when optimizing user engagement. We first propose an Extraction-Inference (E-I) algorithm to estimate the user interest from easily obtained user behaviors. Based on our empirical analysis on a large-scale dataset, we then build a QoS and user Interest based Engagement (QI-E) regression model. Through experiments on our dataset, we demonstrate that the proposed model reaches an improvement in accuracy by 9.99% over the baseline model which only considers QoS factors. The proposed model has potential for designing QoE-oriented scheduling strategies in various network scenarios, especially in the fog computing context.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献