An Engagement Model Based on User Interest and QoS in Video Streaming Systems

Author:

Tan Xiaoying1,Guo Yuchun1ORCID,Orgun Mehmet A.2,Xue Liyin3,Chen Yishuai1

Affiliation:

1. Beijing Jiaotong University, China

2. Macquarie University, Australia

3. Australian Taxation Office, Sydney, NSW 2000, Australia

Abstract

With the surging demand on high-quality mobile video services and the unabated development of new network technology, including fog computing, there is a need for a generalized quality of user experience (QoE) model that could provide insight for various network optimization designs. A good QoE, especially when measured as engagement, is an important optimization goal for investors and advertisers. Therefore, many works have focused on understanding how the factors, especially quality of service (QoS) factors, impact user engagement. However, the divergence of user interest is usually ignored or deliberatively decoupled from QoS and/or other objective factors. With an increasing trend towards personalization applications, it is necessary as well as feasible to consider user interest to satisfy aesthetic and personal needs of users when optimizing user engagement. We first propose an Extraction-Inference (E-I) algorithm to estimate the user interest from easily obtained user behaviors. Based on our empirical analysis on a large-scale dataset, we then build a QoS and user Interest based Engagement (QI-E) regression model. Through experiments on our dataset, we demonstrate that the proposed model reaches an improvement in accuracy by 9.99% over the baseline model which only considers QoS factors. The proposed model has potential for designing QoE-oriented scheduling strategies in various network scenarios, especially in the fog computing context.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quitting Ratio-Based Bitrate Ladder Selection Mechanism for Adaptive Bitrate Video Streaming;IEEE Transactions on Multimedia;2023

2. When Should Recommenders Account for Low QoS?;IEEE Access;2023

3. DeSVQ: Deep Learning Based Streaming Video QoE Estimation;Proceedings of the 23rd International Conference on Distributed Computing and Networking;2022-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3