Ant Colony Optimized Routing Strategy for Electric Vehicles

Author:

Joo Hyunjin1,Lim Yujin1ORCID

Affiliation:

1. Department of IT Engineering, Sookmyung Women’s University, Seoul 04310, Republic of Korea

Abstract

Electric vehicles (EVs) have recently attracted increasing research interest, on account of environmental issues and diminishing fuel reserves. EVs are environmentally friendly but have a short driving range. EVs must utilize energy efficiently, because they travel with limited energy. Conventional vehicle routing methods are not suitable for EVs, as they do not take energy consumption into account. This study introduces an energy efficient routing method using ant colony optimization (ER-ACO) to maximize the energy efficiency. We simulated ER-ACO and compared it with other ACO techniques, including the conventional routing method and other approaches for EVs. As a result, the proposed model improved the energy efficiency in terms of both the average distance per kW and average energy consumption.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal routing for electric vehicles in hybrid charging networks;Journal of Renewable and Sustainable Energy;2023-11-01

2. A matheuristic for the electric vehicle routing problem with time windows and a realistic energy consumption model;Computers & Operations Research;2023-09

3. A Review of the Optimal Allocation of Electric Vehicle Charging Stations;2023 International Conference on Recent Advances in Electrical, Electronics & Digital Healthcare Technologies (REEDCON);2023-05-01

4. Electric Vehicle Routing Problem: Literature Review, Instances and Results with a Novel Ant Colony Optimization Method;2022 IEEE Congress on Evolutionary Computation (CEC);2022-07-18

5. Towards the Integration of Sustainable Transportation and Smart Grids: A Review on Electric Vehicles’ Management;Energies;2022-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3