Coping with Complexity When Predicting Surface Roughness in Milling Processes: Hybrid Incremental Model with Optimal Parametrization

Author:

Beruvides Gerardo1,Castaño Fernando1ORCID,Haber Rodolfo E.1ORCID,Quiza Ramón2,Villalonga Alberto2

Affiliation:

1. Centre for Automation and Robotics, UPM-CSIC, Arganda del Rey, Spain

2. Research Group on Advanced and Sustainable Manufacturing, UM, Matanzas, Cuba

Abstract

The complexity of machining processes relies on the inherent physical mechanisms governing these processes including nonlinear, emergent, and time-variant behavior. The measurement of surface roughness is a critical step done offline by expensive quality control procedures. The surface roughness prediction using an online efficient computational method is a difficult task due to the complexity of machining processes. The paradigm of hybrid incremental modeling makes it possible to address the complexity and nonlinear behavior of machining processes. Parametrization of models is, however, one bottleneck for full deployment of solutions, and the optimal setting of model parameters becomes an essential task. This paper presents a method based on simulated annealing for optimal parameters tuning of the hybrid incremental model. The hybrid incremental modeling plus simulated annealing is applied for predicting the surface roughness in milling processes. Two comparative studies to assess the accuracy and overall quality of the proposed strategy are carried out. The first comparative demonstrates that the proposed strategy is more accurate than theoretical, energy-based, and Taguchi models for predicting surface roughness. The second study also corroborates that hybrid incremental model plus simulated annealing is better than a Bayesian network and a multilayer perceptron for correctly predicting the surface roughness.

Funder

Electronic Component Systems for European Leadership (ECSEL) Joint Undertaking

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3