Affiliation:
1. Electronic Information and Control Engineering College, Xi’an University of Architecture and Technology, Xi’an 710055, China
Abstract
The centralized Kalman filter is always applied in the velocity and attitude matching of Transfer Alignment (TA). But the centralized Kalman has many disadvantages, such as large amount of calculation, poor real-time performance, and low reliability. In the paper, the federal Kalman filter (FKF) based on neural networks is used in the velocity and attitude matching of TA, the Kalman filter is adjusted by the neural networks in the two subfilters, the federal filter is used to fuse the information of the two subfilters, and the global suboptimal state estimation is obtained. The result of simulation shows that the federal Kalman filter based on neural networks is better in estimating the initial attitude misalignment angle of inertial navigation system (INS) when the system dynamic model and noise statistics characteristics of inertial navigation system are unclear, and the estimation error is smaller and the accuracy is higher.
Funder
Education Department of Shaanxi Province
Subject
Multidisciplinary,General Computer Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献