The Design of Sports Games under the Internet of Things Fitness by Deep Reinforcement Learning

Author:

Wang Xiangyu1ORCID,Liu Chao2,Sun Laishuang1

Affiliation:

1. School of Social Sport, Shenyang Sport University, Shenyang 110032, Liaoning, China

2. Training Department, Chinese Mountaineering Association, Beijing, China

Abstract

This study explores the application of deep reinforcement learning (DRL) in the Internet of Things (IoT) sports game design. The fundamentals of DRL are deeply understood by investigating the current state of IoT fitness applications and the most popular sports game design architectures. The research object is the ball return decision problem of the popular game of table tennis robot return. Deep deterministic policy gradients are proposed by applying DRL to the ball return decision of a table tennis robot. It mainly uses the probability distribution function to represent the optimal decision solution in the Markov Model decision process to optimize the ball return accuracy and network running time. The results show that in the central area of the table, the accuracy of returning the ball is higher, reaching 67.2654%. Different tolerance radii have different convergence curves. When r = 5 cm, the curve converges earlier. After 500,000 iterations, the curve converges, and the accuracy rate is close to 100%. When r = 2 cm and the number of iterations is 800,000, the curve begins to converge, and the accuracy rate reaches 96.9587%. When r = 1 cm, it starts to converge after 800,000 iterations, and the accuracy is close to 56.6953%. The proposed table tennis robot returns the ball in line with the requirements of the actual environment. It has practical application and reference value for developing IoT fitness and sports.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3