Mechanism of Fructus Mume Pills Underlying Their Protective Effects in Rats with Acetic Acid-Inducedulcerative Colitis via the Regulation of Inflammatory Cytokines and the VEGF-PI3K/Akt-eNOS Signaling Pathway

Author:

Xu Zongying1ORCID,Zhang Xueli1,Lu Ruimin1,Zhang Di1,Zou Tianyuan1,Chen Meng1ORCID,Zhang Dongmei2ORCID

Affiliation:

1. College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China

2. Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China

Abstract

Background. Fructus mume pills (FMPs) have been clinically proven to be effective for treating ulcerative colitis (UC). However, the therapeutic and protective mechanisms have not been fully studied. Aim. We aimed to explore the mechanism of FMPs in an acetic acid (AA)-induced ulcerative colitis rat model. Methods. The targets, GO terms, and KEGG pathways for the FMPs and UC were screened and constructed using network pharmacology. A possible mechanism was verified in a 4% AA-induced colitis rat model. Colitis activity and state were evaluated using the disease activity index, and colon ulceration and intestinal mucosal damage were determined by histopathological observation through HE, AB-PAS, and Masson pathological staining. The concentrations of TNF-α, IL-6, IL-8, IL-10, MPO, MMP9, CXCR1, eNOS, and VEGF were measured to evaluate vascular permeability effects. Results. The network pharmacology results showed 108 active compounds, and 139 FMP-related targets were identified. Twenty-nine targets were identified for FMPs against UC, which included MMP9, MMP3, ESR1, PTGS1, PPARA, MPO, and NOS2. A total of 1,536 GO terms and 41 pathways were associated with FMP treatment of UC. The pharmacological evaluation showed that FMPs attenuated inflammation in AA-induced colitis by reducing the serum concentrations of TNF-α, IL-6, IL-8, and IL-10 and the colonic concentrations of MPO, MMP9, and CXCR1. FMPs ameliorated hyperpermeability by reducing the colonic VEGF and eNOS concentrations. FMPs also significantly decreased the VEGFA, VEGFR2, Src, and eNOS protein expressions in colon tissue through the VEGF-PI3K/Akt-eNOS signaling pathway. Conclusion. These results suggest that FMPs control UC inflammation by regulating inflammatory cytokine concentrations. FMPs alleviate AA-induced UC by regulating microvascular permeability through the VEGF-PI3K/Akt-eNOS signaling pathway.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3