Milk-Gelling Properties of Proteases Extracted from the Fruits of Solanum Elaeagnifolium Cavanilles

Author:

Nájera-Domínguez Carolina1ORCID,Gutiérrez-Méndez Néstor1ORCID,Carballo-Carballo Diego E.1ORCID,Peralta-Pérez María Rosario1ORCID,Sánchez-Ramírez Blanca1ORCID,Nevarez-Moorillón Guadalupe Virginia1ORCID,Quintero-Ramos Armando1ORCID,García-Triana Antonio1ORCID,Delgado Efren2ORCID

Affiliation:

1. The Graduate School, Graduate Program in Chemistry, Chemistry School, Autonomous University of Chihuahua, Mexico

2. Consumer and Environmental Sciences, College of Agricultural, New Mexico State University, New Mexico, USA

Abstract

There is little information on the milk coagulation process by plant proteases combined with chymosins. This work is aimed at studying the capability of protease enclosed in the ripe fruits of Solanum elaeagnifolium (commonly named trompillo) to form milk gels by itself and in combination with chymosin. For this purpose, proteases were partially purified from trompillo fruits. These proteases had a molecular weight of ~60 kDa, and results suggest cucumisin-like serine proteases, though further studies are needed to confirm this observation. Unlike chymosins, trompillo proteases had high proteolytic activity ( PA = 50.23 U Tyr mg protei n 1 ) and low milk-clotting activity ( MCA = 3658.86 SU m L 1 ). Consequently, the ratio of MCA/PA was lower in trompillo proteases (6.83) than in chymosins (187 to 223). Our result also showed that milk gels formed with trompillo proteases were softer (7.03 mPa s) and had a higher release of whey (31.08%) than the milk gels clotted with chymosin (~10 mPa s and ~4% of syneresis). However, the combination of trompillo proteases with chymosin sped up the gelling process (21 min), improved the firmness of milk gels (12 mPa s), and decreased the whey release from milk curds (3.41%). Therefore, trompillo proteases could be combined with chymosin to improve the cheese yield and change certain cheese features.

Funder

Mexican National Council of Science and Technology

Publisher

Hindawi Limited

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3