Lightweight Data Compression in Wireless Sensor Networks Using Huffman Coding

Author:

Medeiros Henry Ponti1,Maciel Marcos Costa2,Demo Souza Richard3ORCID,Pellenz Marcelo Eduardo4

Affiliation:

1. Purdue University, 465 Northwestern Avenue, West Lafayette, IN 47907-2035, USA

2. Federal Institute of Education, Science and Technology of Amazonas (IFAM), Campus Manaus Industrial District, Avenida Danilo Areosa, 1672, 69075-351 Manaus, AM, Brazil

3. Federal University of Technology-Paraná (UTFPR), Avenida Sete de Setembro, 3165, 80230-901 Curitiba, PR, Brazil

4. Pontifical Catholic University-Paraná (PUC-PR), R. Imaculada Conceição, 1155, 80215-901 Curitiba, PR, Brazil

Abstract

This paper presents a lightweight data compression method for wireless sensor networks monitoring environmental parameters with low resolution sensors. Instead of attempting to devise novel ad hoc algorithms, we show that, given general knowledge of the parameters that must be monitored, it is possible to efficiently employ conventional Huffman coding to represent the same parameter when measured at different locations and time periods. When the data collected by the sensor nodes consists of integer measurements, the Huffman dictionary computed using statistics inferred from public datasets often approaches the entropy of the data. Results using temperature and relative humidity measurements show that even when the proposed method does not approach the theoretical limit, it outperforms popular compression mechanisms designed specifically for wireless sensor networks.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HBC: Combining Lossy and Lossless Hybrid Bilayer Compression Framework on Time-Series Data;2023 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom);2023-12-21

2. Low Overhead Interdependent Source-Channel Coding with Sequence Preservation;2023 IEEE Guwahati Subsection Conference (GCON);2023-06-23

3. A Novel Hybrid Medical Data Compression Using Huffman Coding and LZW in IoT;IETE Journal of Research;2022-07-21

4. Secure MRI Brain Image Transmission Using IOT Devices Based on Hybrid Autoencoder and Restricted Boltzmann Approach;Journal of Sensors;2022-05-29

5. An Energy-Efficient Compatible Method for Recovering Arterial Blood Pressure and Respiration Signals in WBANs;2022 8th International Conference on Web Research (ICWR);2022-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3