A Gaussian High-Dimensional Random Matrix-Based Method for Detecting Abnormal Student Behaviour in Chinese Language Classrooms

Author:

Zhang Xuyun1ORCID

Affiliation:

1. School of Humanities, Xinxiang University, Xinxiang 453003, China

Abstract

In this paper, a Gaussian high-dimensional random matrix approach is used to conduct an in-depth study and analysis of the detection of abnormal student behaviour in Chinese language classrooms, and a corresponding model is designed for practical application. The Gaussian high-dimensional random matrix technique and recurrent neural network technique are applied to build a basic technical framework for intelligent proctoring. An innovative method of human posture estimation is used to complete the proctoring task, and the structure of the Gaussian high-dimensional random matrix method is simplified and the model is compressed to achieve real-time and parallelism of the method. A PolSAR sparse representation classification (OGRM_SRC) algorithm based on orthogonal Gaussian random matrices (OGRM) is proposed to construct an observation dictionary based on polarisation features and OGRM to select typical ground target samples in polarized feature images. The system not only functions as a psychometric assessment of students but also is capable of detecting and analysing abnormal student behaviour based on the improved forest algorithm. The residuals of the pixel to be classified are calculated relative to each atom in the observation dictionary, and the minimum reconstruction residual is used as the classification criterion. The OGRM_SRC algorithm is applied to classify the pixel, and the final classification results are obtained and evaluated for accuracy. We propose a fine-grained action recognition optimisation method for recurrent neural networks, fusing temporal attention information and spatial attention information to improve the action recognition method and improve the model’s ability to recognise fine-grained abnormal behaviours such as looking left, looking right, and copying with head down. Based on this, we conducted some comparative experiments to validate the effectiveness of our work and verified that the system achieved a recognition efficiency of 76.8 FPS and a recognition accuracy of 98.5% in a graphical computing processor.

Funder

Xinxiang University

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference21 articles.

1. CAB: classifying arrhythmias based on imbalanced sensor data[J];Y. Wang;KSII Transactions on Internet and Information Systems (TIIS),2021

2. Formal Language Generation for Fault Diagnosis With Spectral Logic via Adversarial Training

3. SciPy 1.0: fundamental algorithms for scientific computing in Python

4. A detection method based on behavior-path representation against application-layer DDoS attacks[J];Y. Zhao;International Journal on Network Security,2021

5. Predicting drug-target interactions using Lasso with random forest based on evolutionary information and chemical structure

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3