Experimental Investigation on Shear Strength and Microstructure of Chemically Treated Sisal Fiber-Reinforced Concrete

Author:

Kahsay Abadi Haftu1ORCID,Demiss Belachew Asteray12ORCID

Affiliation:

1. College of Architecture and Civil Engineering, Department of Civil Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia

2. Department of Civil Engineering, Construction Quality and Technology Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia

Abstract

The incorporation of sisal fiber into the concrete matrix reduces waste disposal, which has negative environmental impacts. The aim of this study was to perform an experimental investigation on shear strength and microstructure of chemically treated sisal fiber-reinforced concrete (SFRC). In order to accomplish the aim of the study, physical, shear, and mechanical properties of concrete reinforced with chemically treated sisal fiber have been performed. 0.50%, 1.00%, 1.25%, 1.50%, 1.75%, and 2.00% of sodium hydroxide (NaOH) and sulfuric acid (H2SO4) treated sisal fiber were used as an addition to the dry weight average with the help of the American Concrete Institute (ACI) mix design procedure. After the 7th and 28th days of curing, shear strength according to the ASTM D5379M standard and the mechanical properties of concrete have been conducted. For microstructural properties, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were conducted after the concrete was cured for 28 days. Forty-six percent and 20% compressive strength enhancement at the 7th and 28th days of curing was compared to the control mix. Twenty-seven percent enhancement was recorded in the split tensile strength of 1.5% SFRC as compared to the control mix at 28 curing days. A shear strength of 1.5% SFRC was improved by 95% at the 7th curing days and 28% at the 28th curing days as compared to the control mix. As compared to conventional concrete, SFRC shows a denser microstructure. In addition to this, portlandite, quartz, calcium aluminum silicate, and C─S─H crystal are the available phases in the concrete matrix.

Funder

Addis Ababa University

Publisher

Hindawi Limited

Reference51 articles.

1. A Review on Fiber Reinforced Concrete using sisal fiber

2. Study on insulated concrete forms using fibers: a review;A. Punwar;International Research Journal of Engineering and Technology (IRJET),2022

3. Transparent concrete by using optical fibre

4. Obtaining high durability strength using bacteria in light weight concrete

5. MondoE.Shear capacity of steel fibre reinforced concrete beams without conventional shear reinforcement2011Stockholm, SwedenRoyal Institute of Technology (KTH)M.S. thesis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3