Informative SNP Selection Based on a Fuzzy Clustering and Improved Binary Particle Swarm Optimization Algorithm

Author:

Li Zejun12,Ang Li1,Shi Wei2,Xin Ning3,Chen Min12,Tang Hua3ORCID

Affiliation:

1. School of Computer and Information Science, Hunan Institute of Technology, Hengyang 412002, China

2. College of Information Science and Engineering, Hunan University, Changsha, Hunan 410082, China

3. Minimally Invasive Thoracic Surgical Center, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, China

Abstract

Single-nucleotide polymorphism (SNP) involves the replacement of a single nucleotide in a deoxyribonucleic acid (DNA) sequence and is often linked to the development of specific diseases. Although current genotyping methods can tag SNP loci within biological samples to provide accurate genetic information for a disease associated, they have limited prediction accuracy. Furthermore, they are complex to perform and may result in the prediction of an excessive number of tag SNP loci, which may not always be associated with the disease. Therefore in this manuscript, we aimed to evaluate the impact of a newly optimized fuzzy clustering and binary particle swarm optimization algorithm (FCBPSO) on the accuracy and running time of informative SNP selection. Fuzzy clustering and FCBPSO were first applied to identify the equivalence relation and the candidate tag SNP set to reduce the redundancy between loci. The FCBPSO algorithm was then optimized and used to obtain the final tag SNP set. The prediction performance and running time of the newly developed model were compared with other traditional methods, including NMC, SPSO, and MCMR. The prediction accuracy of the FCBPSO algorithm was always higher than that of the other algorithms especially as the number of tag SNPs increased. However, when the number of tag SNPs was low, the prediction accuracy of FCBPSO was slightly lower than that of MCMR (add prediction accuracy values for each algorithm). However, the running time of the FCBPSO algorithm was always lower than that of MCMR. FCBPSO not only reduced the size and dimension of the optimization problem but also simplified the training of the prediction model. This improved the prediction accuracy of the model and reduced the running time when compared with other traditional methods.

Funder

Project of Hunan Institute of Technology

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3