Study on the Behaviors and Mechanism of Ni(II) Adsorption at the Hydroxyapatite-Water Interface: Effect of Particle Size

Author:

Zhao Xiaolan12,Wu Wangsuo12,Pan Duoqiang12,Wu Hanyu23ORCID

Affiliation:

1. Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China

2. Key Laboratory of Special Functional Materials and Structural Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China

3. Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China

Abstract

Hydroxyapatite (HAP) was a highly efficient decontamination material for its strong adsorption capacity used in the immobilization of heavy metals, while the particle-size effect was insufficiently investigated during the sorption process. In the present study, the mechanisms of nickel (Ni(II)) adsorption on HAPs with two different particle sizes were investigated by combing batch experiments, desorption, and XRD analysis. The results showed that the adsorption capacity of 20 nm HAP (nano-HAP) was much higher than that of 12 μm HAP (micro-HAP). It was noticed that the results of the present study also clarified the distinct mechanisms in each adsorption process. As for micro-HAP, Ni2+ adsorbed through slow diffusion and replacement with Ca2+ and then incorporated in the lattice at pH between 6.5 and 9.0, which was confirmed by the results of kinetics, thermodynamics, and desorption. And a more compact crystalline structure and irreversible desorption behavior of micro-HAP after Ni(II) adsorption was confirmed by results of XRD and desorption isotherms, respectively. At pH > 9.0 , lattice incorporation and precipitation controlled together. However, for nano-HAP, the sharp increase of Ni(II) adsorption and ionic strength dependent at pH 6.5 to 9.0 revealed that the dominant mechanisms were ionic exchange and inner-sphere complexation. XRD results showed that characteristic peaks of cassidyite appeared in Ni(II)-loading nano-HAP. At pH > 9.0 , a precipitate of Ni(II) was the dominant mechanism. The experimental finds demonstrated that nanoscale HAP was a more fast, efficient, and desorbable adsorbent than micro-HAP for Ni(II) removal. These findings would be favorable for investigating the removal mechanisms of heavy metals on the HAP materials and designing the synthesis methods.

Funder

Key Laboratory Project of Gansu Province

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3