Long Jump Action Recognition Based on Deep Convolutional Neural Network

Author:

Wang Zhiteng1ORCID

Affiliation:

1. Fujian Normal University, Fuzhou 350108, Fujian, China

Abstract

Long jump is a test item of national student physical health monitoring, which can reflect the quality of students’ lower limb strength. Long jump is a highly technical activity, which includes four basic movements: running aid, jumping, vacating, and landing. Many students have problems with the technical aspects, resulting in test scores that do not objectively reflect the true physical condition of the students, which affects the accuracy of the test results. From the perspective of rapid diagnostic feedback of students’ long jump movements, we design and develop a long jump movement recognition method based on deep convolutional neural network. In this paper, we firstly summarize the traditional visual action recognition algorithm, then apply 3D convolution to extract the spatiotemporal features of long jump action from three directions of the video block, and fuse the spatiotemporal features of the three directions in different ways to achieve feature complementation; finally, using the multimodality of long jump action data, we use 3D convolutional neural network to train the RGB images and then train the depth. This joint training method can accelerate the convergence speed and improve the accuracy of the network on both depth and edge images. The experiments compared the recognition effects of the tandem fusion of features, the maximum fusion, and the multiplicative fusion in the scoring layer, and the highest accuracy of 82.3% was achieved by the tandem fusion of features with the fusion of three modalities.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kid Activity Recognition: A Comprehensive study of kid activity recognition with monitoring activity level using YOLOv8s Algorithms;2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT);2024-05-03

2. Identification of runner fatigue stages based on inertial sensors and deep learning;Frontiers in Bioengineering and Biotechnology;2023-11-17

3. Retracted: Long Jump Action Recognition Based on Deep Convolutional Neural Network;Computational Intelligence and Neuroscience;2023-10-18

4. Body RFID Skeleton-Based Human Activity Recognition Using Graph Convolution Neural Network;IEEE Transactions on Mobile Computing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3