Dexmedetomidine Ameliorates Acute Stress-Induced Kidney Injury by Attenuating Oxidative Stress and Apoptosis through Inhibition of the ROS/JNK Signaling Pathway

Author:

Chen Yongping1,Feng Xiujing1,Hu Xueyuan1,Sha Jichen1,Li Bei1,Zhang Huayun1,Fan Honggang1ORCID

Affiliation:

1. College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China

Abstract

Acute stress induces tissue damage through excessive oxidative stress. Dexmedetomidine (DEX) reportedly has an antioxidant effect. However, protective roles and related potential molecular mechanisms of DEX against kidney injury induced by acute stress are unknown. Herein, rats were forced to swim 15 min followed by restraint stress for 3 h with/without DEX (30 μg/kg). Successful model establishment was validated by an open-field test. Assessment of renal function (creatinine, urea nitrogen), histopathology, oxidative stress (malondialdehyde, glutathione, and superoxide dismutase), and apoptosis (transferase-mediated dUTP nick end labeling) was performed. Localization of apoptosis was determined by immunohistochemistry of cleaved caspase 3 protein. In addition, key proteins of the death receptor-mediated pathway, mitochondrial pathway, endoplasmic reticulum stress (ERS) pathway, and ROS/JNK signaling pathway were measured by Western blot. We found that DEX significantly improved renal dysfunction, ameliorated kidney injury, reduced oxidative stress, and alleviated apoptosis. DEX also inhibited the release of norepinephrine (NE), decreased the production of reactive oxygen species (ROS), and inhibited JNK phosphorylation. Additionally, DEX downregulated the expression of Bax, cytochrome C, cleaved caspase 9, and cleaved caspase 3 proteins in mitochondria-dependent pathways. In summary, DEX protects against acute stress-induced kidney injury in rats by reducing oxidative stress and apoptosis via inhibition of the ROS/JNK pathway.

Funder

Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3