How Slight Solidification Rate Variations within Cast Plate Affect Mechanical Response: A Study on As-Cast A356 Alloy with Cu Additions

Author:

Di Giovanni Maria Teresa1,Cerri Emanuela1ORCID,Saito Takeshi2ORCID,Akhtar Shahid2,Åsholt Petter2,Li Yanjun3,Di Sabatino Marisa3

Affiliation:

1. Department of Engineering and Architecture, University of Parma, Viale G. Usberti 18/A, 43124 Parma, Italy

2. Hydro Aluminium, Research and Technology Development (RTD), 6601 Sunndalsøra, Norway

3. Department of Materials Science and Engineering, Norwegian University of Science and Technology, Alfred Getz vei 2B, 7491 Trondheim, Norway

Abstract

The present work investigates a narrow range of secondary dendrite arm spacing (SDAS), in an as-cast A356 alloy with and without copper (Cu) additions. Cu was added to the base A356 alloy melt to reach the target concentration of 0.5 and 1 wt.%. Samples were selected from 3 different positions within the cast plate, offering 30, 35, and 40 μm SDAS variants. Tensile curves revealed a strong influence between the specimen cutting position and strength, with a pronounced effect in the Cu-containing alloys. Hardness measurements did not confirm the tensile response; hence, to understand the phenomenon, microstructural features have been investigated in detail. Eutectic silicon (Si) particle equivalent diameter (ED) size decreased from the top (T) to the bottom (B) position of the cast. Eutectic Si particle surface area (A%) was found to be denser at the B as compared to the T and simultaneously in the Cu-containing alloy as compared to the Cu-free reference alloy. Backscattered electron (BSE) images were employed to investigate the nature of the Cu-rich intermetallic phases. In conclusion, electrical conductivity measurements were performed to confirm the trends observed.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3