Heat Transfer Coefficient during Evaporation of R-1234yf, R-134a, and R-22 in Horizontal Circular Small Tubes

Author:

Choi Kwang-Il1,Chien Nguyen-Ba2,Oh Jong-Taek1

Affiliation:

1. Department of Refrigeration and Air Conditioning Engineering, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749, Republic of Korea

2. Graduate School, Department of Refrigeration and Air Conditioning Engineering, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749, Republic of Korea

Abstract

Experimental data of heat transfer coefficient during evaporation of R-1234yf, R-134a, and R-22 in horizontal circular small tubes are compared. The local heat transfer coefficient is obtained for heat fluxes ranging from 10 to 35 kW m−2, mass fluxes ranging from 100 to 650 kg m−2 s−1, saturation temperatures of 5, 10, and 15°C, and quality up to 1.0. The test sections are made of stainless steel tubes with inner diameters of 1.5 and 3.0 mm, the lengths of 1000 and 2000. Effects of heat flux, inner tube diameter, and saturation temperature on heat transfer coefficient are reported in the present study. Nucleate boiling heat transfer contribution is predominant, especially at low quality region, and laminar flow appears in the evaporative small tubes. The experimental results are compared against four existing heat transfer coefficients, and the modified correlation of heat transfer coefficient is developed with good prediction.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3