A Novel Low-Velocity Impact Region Identification Method for Cantilever Beams Using a Support Vector Machine

Author:

Wang Fengde1ORCID,Kang Yongtian23ORCID,Xiao Wensheng3ORCID,Li Changjiang3ORCID,Liu Qi34ORCID

Affiliation:

1. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2. China Classification Society Offshore Engineering Technology Centre, Tianjin 300450, China

3. College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China

4. School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore

Abstract

Damage induced by a low-velocity impact can reduce the stability and reliability of structures. In this study, a novel low-velocity impact region identification method based on the spectral peak frequency (SPF) and support vector machine (SVM) is proposed to identify the low-velocity impact regions on a steel cantilever beam. A low-velocity impact region identification system of the cantilever beam is established by applying fiber Bragg grating (FBG) sensors, and only 2 sensors are used in this system. The power spectral density functions of the impact response signal are smoothed using the linear weighting method to remove pseudospectral peak frequencies, and then, SPFs are extracted as the features. For 25 low-velocity impact regions with dimensions of 30 mm × 10 mm, the results show that the recognition rate obtained by the proposed method is 100% and the feature vector consisting of the first two SPFs with the largest amplitude has the highest recognition rate. Through the comparative study, it is found that the recognition rate of SVM is higher than that of the probabilistic neural network (PNN) and extreme learning machine (ELM) for low-velocity impact area recognition of cantilever beams. As a result, the low-velocity impact region identification method of this paper can be applied to the real-time health monitoring of cantilever beam structures.

Funder

Ministry of Industry and Information Technology of the People's Republic of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3