Affiliation:
1. School of Computer and Information Engineering, Inha University, Incheon 22212, Republic of Korea
Abstract
Due to the development of mobile technology and wide availability of smartphones, the Internet of Things (IoT) starts to handle high volumes of video data to facilitate multimedia-based services, which requires energy-efficient video playback. In video playback, frames have to be decoded and rendered at high playback rate, increasing the computation cost on the CPU. To save the CPU power, dynamic voltage and frequency scaling (DVFS) dynamically adjusts the operating voltage of the processor along with frequency, in which appropriate selection of frequency on power could achieve a balance between performance and power. We present a decoding model that allows buffering frames to let the CPU run at low frequency and then propose an algorithm that determines the CPU frequency needed to decode each frame in a video, with the aim of minimizing power consumption while meeting buffer size and deadline constraints, using a dynamic programming technique. We finally extend this algorithm to optimize CPU frequencies over a short sequence of frames, producing a practical method of reducing the energy required for video decoding. Experimental results show a system-wide reduction in energy of27%, compared with a processor running at full speed.
Subject
Computer Networks and Communications,Computer Science Applications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献