Affiliation:
1. Department of Clinical and Experimental Medicine, Unit of Endocrinology, University of Pisa, Pisa, Italy
2. Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
3. Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
4. Università Cattolica del Sacro Cuore, Roma, Italy
Abstract
Introduction. Loss of function mutations of CYP24A1 gene, which is involved in vitamin D catabolism, cause vitamin D-mediated PTH-independent hypercalcemia. The phenotype varies from life-threatening forms in the infancy to milder forms in the adulthood. Case Presentation. We report a case of a 17-year-old woman with a history of nephrolithiasis, mild PTH-independent hypercalcemia (10,5mg/dL), and high serum 1,25(OH)2D concentrations (107pg/mL). Other causes of hypercalcemia associated with the above biochemical signature were excluded. Family history revealed nephrolithiasis in the sister. Blood testing in first-degree relatives showed serum PTH in the low-normal range and 1,25(OH)2D at the upper normal limit or slightly elevated. The CYP24A1 gene analysis revealed a known homozygous loss-of-function pathogenic variant (c.428_430delAAG, rs777676129, p.Glu143del). The panel of vitamin D metabolites evaluated by liquid chromatography showed the typical profile of CYP24A1 mutations, namely, low 24,25(OH)2D3, elevated 25(OH)D3:24,25(OH)2D3 ratio, and undetectable 1,24,25(OH)3D3. The parents and both the siblings harbored the same variant in heterozygosis. We decided for a watchful waiting approach and the patient remained clinically and biochemically stable over a 24-month followup. Conclusion. CYP24A1 gene mutations should be considered in cases of PTH-independent hypercalcemia, once that more common causes (hypercalcemia of malignancy, granulomatous diseases, and vitamin D intoxication) have been ruled out.
Funder
University of Pisa funds to Professor Claudio Marcocci. Aspects of this work were supported by a grant from the European Rare Diseases Consortium
Subject
Endocrinology, Diabetes and Metabolism
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献