Rings in Which Every Element Is a Sum of a Nilpotent and Three 7-Potents

Author:

Wang Yanyuan1ORCID,Yang Xinsong1ORCID

Affiliation:

1. Department of Mathematics, Harbin University of Science and Technology, Harbin 150080, China

Abstract

In this article, we define and discuss strongly S3,7 nil-clean rings: every element in a ring is the sum of a nilpotent and three 7-potents that commute with each other. We use the properties of nilpotent and 7-potent to conduct in-depth research and a large number of calculations and obtain a nilpotent formula for the constant a. Furthermore, we prove that a ring R is a strongly S3,7 nil-clean ring if and only if R=R1R2R3R4R5R6, where R1, R2, R3, R4, R5, and R6 are strongly S3,7 nil-clean rings with 2NilR1, 3NilR2, 5NilR3, 7NilR4, 13NilR5, and 19NilR6. The equivalent conditions of strongly S3,7 nil-clean rings in some cases are discussed.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Reference11 articles.

1. Lifting idempotents and exchange rings;W. K. Nicholson;Transactions of the American Mathematical Society,1977

2. Strongly clean rings and fitting’s lemma;W. K. Nicholson;Communications in Algebra,1999

3. Nil clean rings;A. J. Diesl;Journal of Algebra,2013

4. On rings in which every element is uniquely expressible as a sum of a nilpotent element and a certain potent element;Y. Hirano;Mathematical Journal of Okayama University,1988

5. Nil-clean and strongly nil-clean rings;T. Koşan;Journal of Pure and Applied Algebra,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3