Ultrasound-Targeted Microbubble Destruction Enhances Inhibitory Effect of Apatinib on Angiogenesis in Triple Negative Breast Carcinoma Xenografts

Author:

Hong Dengke1,Yang Jiajia2ORCID,Guo Jingjing2,Zhang Yu2,Chen Zhikui2

Affiliation:

1. Department of Vascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China

2. Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, Fujian, China

Abstract

Ultrasound-targeted microbubble destruction (UTMD) has been proven as an effective technique to assist drugs to cross the vascular wall and cell membrane. This study was aimed at evaluating the synergistic antiangiogenic and growth-inhibiting effects of apatinib (APA) and UTMD on the triple negative breast cancer (TNBC). The TNBC xenograft model was established in nude mice ( n = 40 ) which were then randomly divided into the APA plus UTMD (APA-U) group, UTMD group, APA group, and model control (M) group ( n = 10 per group). Corresponding treatment was done once daily for 14 consecutive days. The general condition and body weight of tumor-bearing nude mice were monitored. Routine blood test and detection of liver and kidney function were done after treatments. The tumor size and microcirculation were examined by two-dimensional ultrasonography (2DUS) and contrast-enhanced ultrasonography (CEUS), respectively. Then, the tumor tissues were harvested for the detection of vascular endothelial growth factor (VEGF) by immunohistochemistry and for CD31-PAS double staining to assess microvessel density (MVD) and heterogeneous vascular positivity rate. After treatments, the tumor growth and angiogenesis were significantly inhibited in the APA group and the APA-U group, and these effects were more obvious in the APA-U group. The tumor volume, CEUS parameters, VEGF expression, and MVD in the APA-U group were significantly lower than those in the APA group ( P < 0.05 ), while there were no marked differences in the heterogeneous vascular positivity rate, body weight, and blood parameters between the two groups ( P > 0.05 ). In the UTMD group, the tumor growth and angiogenesis were not significantly inhibited, and all the parameters were similar to those in the M group ( P > 0.05 ). During the experiment, all mice survived and generally had good condition. In conclusion, APA combined with UTMD may exert synergistic antiangiogenic and growth-inhibiting effects on the TNBC and not increase the heterogeneous vasculature and the severity of APA-related systemic side effects.

Funder

Joint Funds for the Innovation of Science and Technology of Fujian Province

Publisher

Hindawi Limited

Subject

Cancer Research,Cell Biology,Molecular Medicine,General Medicine,Pathology and Forensic Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3