On the Performance of Self-Concatenated Coding for Wireless Mobile Video Transmission Using DSTS-SP-Assisted Smart Antenna System

Author:

Minallah Nasru1ORCID,Ahmed Ishtiaque2,Ijaz Muhammad3ORCID,Khan Atif Sardar1,Hasan Laiq1,Rehman Atiqur3ORCID

Affiliation:

1. Department of Computer Systems Engineering, University of Engineering and Technology Peshawar, Peshawar 25000, Pakistan

2. National Centre in Big Data and Cloud Computing, University of Engineering and Technology Peshawar (NCBC-UETP), Peshawar 25000, Pakistan

3. Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar

Abstract

In the current age of advanced technologies, there is an escalating demand for reliable wireless systems, catering to the high data rates of mobile multimedia applications. This article presents a novel approach to the concept of Self-Concatenated Convolutional Coding (SECCC) with Sphere Packing (SP) modulation via Differential Space-Time Spreading- (DSTS-) based smart antennas. The two transmitters provide transmit diversity which is capable of recuperating the signal from the effects of fading, even with a single receiving antenna. The proposed DSTS-SP SECCC scheme is probed for the Rayleigh fading channel. The SECCC structure is developed using the Recursive Systematic Convolutional (RSC) code with the aid of an interleaver. Interleaving generates randomness in exchange for extrinsic information between the constituent decoders. Iterative decoding is invoked at the receiving side to enhance the output performance by attaining fruitful convergence. The convergence behaviour of the proposed system is investigated using EXtrinsic Information Transfer (EXIT) curves. The performance of the proposed system is ascertained with the H.264 standard video codec. The perceived video quality of DSTS-SP SECCC is found to be significantly better than that of the DSTS-SP RSC. To be more precise, the proposed DSTS-SP SECCC system exhibits an E b / N 0 gain of 8 dB at the PSNR degradation point of 1 dB, relative to the equivalent rate DSTS-SP RSC. Similarly, an E b / N 0 gain of 10 dB exists for the DSTS-SP SECCC system at 1 dB degradation point when compared with the SECCC scheme dispensing with the DSTS-SP approach.

Funder

Qatar National Library

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3