Evaluation of Leachate Recirculation Effect on the Acceleration of Waste Mineralization Process by Using a Coupled Numerical Model

Author:

Liu Hailong12ORCID,Huyan Zhen1ORCID,Cui Chunyi1ORCID,Luo Xiang1ORCID,Jiang Xingyao1ORCID

Affiliation:

1. Department of Civil Engineering, Dalian Maritime University, Dalian 116026, China

2. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China

Abstract

Accelerating the waste mineralization is of great significance to control the settlement of transportation facilities nearby landfills. Mineralized waste can also be used as road construction materials to recycle waste resources and reduce the construction cost of transportation facilities. A biochem-hydro-mechanical-solute migration-coupled model for describing complex interactions in landfills with high kitchen waste content has been developed. The proposed model can consider large leachate production and landfill gas entrapment due to the fast degradation of kitchen waste. The quantitative effects of three leachate recirculation conditions are investigated in this article via a typical landfill cell. According to the simulation results, introducing methanogen into landfills with leachate recirculation can relieve acidification caused by fast hydrolysis of kitchen waste and speed up the mineralization process of landfills with high kitchen waste content significantly. Furthermore, landfill gas generation potential loss and fast degradation compression should be considered in the implementation of leachate recirculation in landfills with high kitchen waste content, which helps to maintain the operation of transportation facilities nearby landfills and improve the economic and environmental benefits of leachate treatment.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3