Exosomal circEhmt1 Released from Hypoxia-Pretreated Pericytes Regulates High Glucose-Induced Microvascular Dysfunction via the NFIA/NLRP3 Pathway

Author:

Ye Lin123ORCID,Guo Hui12,Wang Yuan12,Peng Yun12,Zhang Yongxin12,Li Shu12,Yang Meina12,Wang Ling124ORCID

Affiliation:

1. Shenzhen Eye Hospital, Shenzhen, 518040 Guangdong, China

2. Visual-Optic Institute, Health Science Center, Shenzhen University, Shenzhen, 518037 Guangdong, China

3. Guangdong Research Institute, Wuhan University, China

4. Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen 518040, China

Abstract

Diabetic retinopathy (DR) is a frequently occurring microvascular complication induced by long-term hyperglycemia. Pericyte-endothelial cell crosstalk is critical for maintaining vascular homeostasis and remodeling; however, the molecular mechanism underlying that crosstalk remains unknown. In this study, we explored the crosstalk that occurs between endothelial cells and pericytes in response to diabetic retinopathy. Pericytes were stimulated with cobalt chloride (CoCl2) to activate the HIF pathway. Hypoxia-stimulated pericytes were cocultured with high glucose- (HG-) induced endotheliocytes. Cell viability was determined using the CCK-8 assay. Western blot studies were performed to detect the expression of proteins associated with apoptosis, hypoxia, and inflammation. ELISA assays were conducted to analyze the release of IL-1β and IL-18. We performed a circRNA microarray analysis of exosomal RNAs expressed under normoxic or hypoxic conditions. A FISH assay was performed to identify the location of circEhmt1 in pericytes. Chromatin immunoprecipitation (CHIP) was used to identify the specific DNA-binding site on the NFIA-NLRP3 complex. We found that pericyte survival was negatively correlated with the angiogenesis activity of endotheliocytes. We also found that hypoxia upregulated circEhmt1 expression in pericytes, and circEhmt1 could be transferred from pericytes to endotheliocytes via exosomes. Moreover, circEhmt1 overexpression protected endotheliocytes against HG-induced injury in vitro. Mechanistically, circEhmt1 was highly expressed in the nucleus of pericytes and could upregulate the levels of NFIA (a transcription factor) to suppress NLRP3-mediated inflammasome formation. Our study revealed a critical role for circEhmt1-mediated NFIA/NLRP3 signaling in retinal microvascular dysfunction and suggests that signaling pathway as a target for treating DR.

Funder

Shenzhen Clinical Research Project

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3