Affiliation:
1. Information Engineering University, Zhengzhou 450002, China
2. Zhengzhou University of Aeronautics, Zhengzhou 450046, China
Abstract
In this paper, secure transmission in a simultaneous wireless information and power transfer technology-enabled heterogeneous network with the aid of multiple IRSs is investigated. As a potential technology for 6G, intelligent reflecting surface (IRS) brings more spatial degrees of freedom to enhance physical layer security. Our goal is to maximize the secrecy rate by carefully designing the transmit beamforming vector, artificial noise vector, and reflecting coefficients under the constraint of quality-of-service. The formulated problem is hard to solve due to the nonconcave objective function as well as the coupling variables and unit-modulus constraints. Fortunately, by using alternating optimization, successive convex approximation, and sequential Rank-1 constraint relaxation approach, the original problem is transformed into convex form and a suboptimal solution is achieved. Numerical results show that the proposed scheme outperforms other existing benchmark schemes without IRS and can maintain promising security performance as the number of terminals increases with lower energy consumption.
Funder
National Natural Science Foundation of China
Subject
Computer Networks and Communications,Information Systems
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献