Process Variation-Resistant Golden-Free Hardware Trojan Detection through a Power Side Channel

Author:

Yuan Yidong12,Zhang Yao34ORCID,Zhao Yiqiang1,Zhang Xige12,Tang Ming34ORCID

Affiliation:

1. School of Microelectronics, Tianjin University, Tianjin 300072, China

2. Beijing Engineering Research Center of High-Reliability IC with Power Industrial Grade, Beijing Smart-Chip Microelectronics Technology Co., Ltd., Beijing 100192, China

3. School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China

4. Key Laboratory of Aerospace Infomation Security and Trusted Computing, Ministry of Education, Wuhan University, Wuhan 430072, China

Abstract

With the globalization of the manufacturing supply chain, the malicious modification existing in the middle of distrust is becoming an important security issue on the chip. These modifications are called hardware Trojan (HT). HT is difficult to detect due to its high concealment and diversity of implementation. HT detection based on the side channel is a relatively effective detection method because it does not need to trigger the Trojan or destroy the chip. However, detection based on the side channel faces two major challenges. Firstly, the side channel detection is quite dependent on the golden model. The second one relates to the accuracy of the samples. Side channel information of the chip comes from the hardware manufacturing process and implementation, so it is obviously affected by process variation. In the existing work, many self-reference detection methods have been proposed to solve the problem of missing golden models. However, the existing methods often have special requirements for the circuit structure (such as the need for self-similar structures in the circuit). And, they can hardly resist process variation. This paper combines design and detection. We select the power consumption generated at different times and construct two self-reference ‘knapsack’ to detect HT. The solution proposed in this article is a kind of self-reference method, but we need neither self-similar structures nor the same state of some clocks in the circuit. Meanwhile, by constructing the ‘knapsack,’ we reduce the impact of process variation on detection accuracy because the process variation in the two sets of power consumption is balanced.

Funder

The Laboratory Open Fund of Beijing Smart-Chip Microelectronics Technology Co., Ltd.,

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hardware Trojans Detection and Prevention Techniques Review;Wireless Personal Communications;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3