Mechanical Stretch Induces Annulus Fibrosus Cell Senescence through Activation of the RhoA/ROCK Pathway

Author:

Ning Li1,Gao Lei2,Zhang Fan3,Li Xiaoxiao4,Wang Tingting1ORCID

Affiliation:

1. Weifang People’s Hospital, Weifang, Shandong, China

2. Department of Orthopaedics, The Third People’s Hospital of Jinan, Shandong, China

3. Department of Orthopaedics, Eightieth Group Army Hospital of PLA Army, Weifang, Shandong, China

4. Shandong Medical College, Jinan, China

Abstract

Background. Intervertebral disc is responsible for absorbing and transmitting mechanical compression. Under physiological conditions, the peripheral annulus fibrosus (AF) cells are subjected to different magnitudes of transverse mechanical stretch depending on the swelling of the central nucleus pulposus tissue. However, the biological behavior of AF cells under mechanical stretch is not well studied. Objective. This study was performed to study the effects of mechanical tension on AF cell senescence and the potential signaling transduction pathway. Methods. Rat AF cells were made to experience different magnitudes of mechanical stretch (2% elongation and 20% elongation for 4 hours every day at 1 Hz) in a 10-day experiment period. The inhibitor RKI-1447 of the Rho-associated coiled-coil–containing protein kinases (ROCK) was added along with culture medium to investigate its role. Cell proliferation, cell cycle, telomerase activity, and expression of senescence markers (p16 and p53) were analyzed. Results. We found that 20% elongation significantly decreased cell proliferation, promoted G0/G1 cell cycle arrest, decreased telomerase activity, and upregulated mRNA/protein expression of p16 and p53. Moreover, the inhibitor RKI-1447 partly resisted effects of 20% elongation on these parameters of cell senescence. Conclusion. High mechanical stretch obviously induces AF cell senescence through the RhoA/ROCK pathway. This study provides us a deeper understanding on the AF cell’s behavior under mechanical stretch.

Funder

Scientific Research Fund of Weifang People’s Hospital

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3