New Approach for Risk Estimation Algorithms of BRCA1/2 Negativeness Detection with Modelling Supervised Machine Learning Techniques

Author:

Yazici Hulya1ORCID,Odemis Demet Akdeniz1ORCID,Aksu Dogukan2ORCID,Erdogan Ozge Sukruoglu1ORCID,Tuncer Seref Bugra1ORCID,Avsar Mukaddes1ORCID,Kilic Seda1ORCID,Turkcan Gozde Kuru1ORCID,Celik Betul1ORCID,Aydin Muhammed Ali2ORCID

Affiliation:

1. Istanbul University, Oncology Institute, Department of Basic Oncology, Division of Cancer Genetics, 34093 Fatih, Istanbul, Turkey

2. Istanbul University-Cerrahpasa, Engineering Faculty, Computer Engineering Department, 34320 Avcilar, Istanbul, Turkey

Abstract

BRCA1/2 gene testing is a difficult, expensive, and time-consuming test which requires excessive work load. The identification of the BRCA1/2 gene mutations is significantly important in the selection of treatment and the risk of secondary cancer. We aimed to develop an algorithm considering all the clinical, demographic, and genetic features of patients for identifying the BRCA1/2 negativity in the present study. An experimental dataset was created with the collection of the all clinical, demographic, and genetic features of breast cancer patients for 20 years. This dataset consisted of 125 features of 2070 high-risk breast cancer patients. All data were numeralized and normalized for detection of the BRCA1/2 negativity in the machine learning algorithm. The performance of the algorithm was identified by studying the machine learning model with the test data. k nearest neighbours (KNN) and decision tree (DT) accuracy rates of 9 features involving Dataset 2 were found to be the most effective. The removal of the unnecessary data in the dataset by reducing the number of features was shown to increase the accuracy rate of algorithm compared with the DT. BRCA1/2 negativity was identified without performing the BRCA1/2 gene test with 92.88% accuracy within minutes in high-risk breast cancer patients with this algorithm, and the test associated result waiting stress, time, and money loss were prevented. That algorithm is suggested be useful in fast performing of the treatment plans of patients and accurately in addition to speeding up the clinical practice.

Funder

Istanbul Üniversitesi

Publisher

Hindawi Limited

Subject

Biochemistry, medical,Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3