FoSSA Optimization-Based SVM Classifier for the Recognition of Partial Discharge Patterns in HV Cables

Author:

Sun Kang12ORCID,Meng Yuxuan1ORCID,Dong Shuchun2ORCID

Affiliation:

1. School of Electrical Engineering and Automation, Henan Key Laboratory of Intelligent Detection and Control of Coal Mine Equipment, Henan Polytechnic University, Jiaozuo 454003, China

2. Dianrong Intelligent Technology Co., Ltd., Kunshan 215334, China

Abstract

In order to enhance the classification accuracy and the generalization performance of the SVM classifier in cable partial discharge (PD) pattern recognition, a firefly optimized sparrow search algorithm (FoSSA) is proposed to optimize its kernel function parameters and penalty factors. First, the Circle-Gauss hybrid mapping model is employed in the population initialization stage of the sparrow search algorithm (SSA) to eliminate the uneven population distribution of random mapping. Sparrows tend to fall into local extremums during the search process, while the firefly algorithm has a fast optimization speed and strong local search ability. Thus, a firefly disturbance is added in the sparrow search process, and the fitness value is recalculated to update the sparrow position to enhance the sparrow’s local optimization ability and accuracy. Finally, based on the SSA, a dynamic step-size strategy is adopted to make the step size dynamically decrease with the number of iterations and improve the accuracy of convergence. Six benchmark functions are employed to evaluate the optimization performance of the FoSSA quantitatively. Experiment results show that the recognition accuracy of the PD patterns using the SVM optimized by the FoSSA could reach 97.5%.

Funder

Science and Technology of Henan Province

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3