Effect of Dietary Selenium on Protein and Lipid Oxidation and the Antioxidative Potential of Selected Chicken Culinary Parts during Frozen Storage

Author:

Korzeniowska Małgorzata1ORCID,Króliczewska Bożena2,Kopeć Wiesław1

Affiliation:

1. Department of Animal Products Technology and Quality Management, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Str., 51-630 Wrocław, Poland

2. Department of Animal Physiology and Biostructure, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida Str. 31, 50-375 Wroclaw, Poland

Abstract

The objective of the study was to evaluate the effects of inorganic and organic selenium in the diet of broiler chickens on the oxidative changes in the functional groups of proteins and total lipids, as well as the antioxidative potential of typical culinary parts fresh and frozen. Materials used in the nutrition study comprises one-day-old Flex broiler chickens randomly allocated to three dietary treatments: Control and SeN-fed diet enriched with 0.50 mg/kg of inorganic selenium (sodium selenite), and SeO-fed with diet containing 0.50 mg/kg of selenized yeast Yarrowia lipolytica. After slaughter, chicken carcasses were divided into the most typical culinary parts i.e., wings, outer and deep breasts, drumstick, thigh and back and analyzed in the fresh state and during frozen storage at −18°C until 90 days. The analyses undertaken during the study measured selenium concentration, CO, SH, and NH2 groups in the proteins, TBARS-expressing changes in the lipids, and antioxidative potential by ABTS, DPPH, and FRAP methods. The results of the study showed that the dietary selenium supplementation effectively increased the selenium concentration in all analyzed culinary parts of the chicken carcass, especially high in leg muscles. Selenium supplementation of the chicken diet significantly reduced the oxidative changes in the most important chemical reactive groups of the muscle myofibrillar proteins in all analyzed culinary parts. Both forms of selenium, organic and inorganic, were able to slow down the oxidation processes during first 30 days of the frozen storage of the meat. Longer storage could be only recommended for breast fillets, definitely not for the back part. The effect was much stronger in case of an organic selenium supplementation comparing to inorganic form of diet enrichment.

Funder

Polish Ministry of Science

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3