Stability Analysis of Steel Lining at Pressure Diversion Tunnel Collapse Zone during Operating Period

Author:

Xiao Ming12ORCID,Zhao Chen12ORCID

Affiliation:

1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China

2. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering, Wuhan University, Ministry of Education, Wuhan 430072, China

Abstract

At the collapse zone, the effects of the thickness of the consolidation grouting layer and the water pressure on the steel lining are vital to the stability of steel-lined pressure diversion tunnels. In this paper, a joint element and the load-sharing ratio of the consolidation layer are introduced to investigate the joint load-bearing characteristics of the steel lining and the consolidation layer and to determine a suitable consolidation layer thickness; a coupling method for simulating the hydromechanical interaction of the reinforced concrete lining is adopted to investigate the effect of internal water exosmosis on the seepage field at the collapse zone and to determine the external water pressure on the steel lining. In the case of a steel-lined pressure diversion tunnel, a numerical simulation is implemented to analyse the effect of the thickness of the consolidation layer and the distribution of the seepage field under the influence of internal water exosmosis. The results show that a 10 m thick consolidation layer and the adopted antiseepage measures ensure the stability of the steel lining at the collapse zone under internal and external water pressure. These research results provide a reference for the design of treatment measures for large-scale collapses in steel-lined pressure tunnels.

Funder

National Key Basic Research Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3