An Active Network-Based Open Framework for IoT

Author:

Amjad Mahwish1ORCID,Iradat Faisal1

Affiliation:

1. Computer Science Department, Institute of Business Administration, Karachi, Pakistan

Abstract

Major benefits of wireless sensor nodes of IoT like low cost and easy deployment are advocating their usage in variety of applications. Some of them are health monitoring, agriculture, environmental and habitant monitoring, and water monitoring. These nodes are autonomous in nature. It follows that they like to operate in a dynamic and adaptive network environment. So, the communication mechanism between IoT nodes must be robust and adaptive with respect to the environmental change. Unfortunately, the traditional networking architecture supports limited and fixed network computations. These limitations inhibit flexible and robust IoT nodes communication. In addition, the energy consumption in communication nodes is high due to limited processing. To address these issues, this paper gives rebirth to the active system. The proposed active network framework brings a novel integration of the active system with recent technologies (software-defined networking and network function virtualization). As a result of integration, the active system runs as a network function virtualization under the control of software-defined networking. In our view, the amalgam of recent technologies with the active system will promote a robust and flexible IoT nodes communication along with reduced energy consumption. Moreover, various design benefits such as security, flexibility, usability, cost, and performance will be added to the system. Additionally, the proposed framework is open and generalized. It can be extended to other networks such as mobile, satellite, and vehicular networks.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring New Building Energy Saving Control Strategy Application under the Energy Internet of Things;IOP Conference Series: Earth and Environmental Science;2021-03-01

2. Data-Driven Predictive Control of Building Energy Consumption under the IoT Architecture;Wireless Communications and Mobile Computing;2020-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3