Research on the Improvement of Feedback Linearization Control in Suspension System Countering Inductance Variation

Author:

Zhang Liwei1ORCID,Zhang Yue1,Zhang Chao1,Zhao He1

Affiliation:

1. School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China

Abstract

The safety of the magnetic levitation (maglev) train is closely related to the control performance of the suspension module. However, during operation, the working conditions vary and are vulnerable to the external disturbances. In this work, a large-scale variation of the inductance of the magnetic levitation operation under different air gap conditions is considered, where the transfer function of the system changes nonlinearly. On the basis of the classical feedback linearization method, the algorithm of the first-order derivative for a single equilibrium point is improved, and then a multiequilibrium point feedback linearization method subject to the variation of the inductance is derived. The proposed linearization method can decouple the inductance from the air gap dynamics in any state of levitation, thus, reducing the model error. Using a general linear controller, the closed-loop control performance of the nonlinear hybrid excitation suspension system is run in MATLAB®. The simulation results show that the proposed method achieves good dynamic performance under various operating conditions and it improves the robust performance of the system.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3