Kernel Principal Component Analysis of Coil Compression in Parallel Imaging

Author:

Chang Yuchou1ORCID,Wang Haifeng2ORCID

Affiliation:

1. Computer Science and Engineering Technology Department, University of Houston-Downtown, Houston, TX 77002, USA

2. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China

Abstract

A phased array with many coil elements has been widely used in parallel MRI for imaging acceleration. On the other hand, it results in increased memory usage and large computational costs for reconstructing the missing data from such a large number of channels. A number of techniques have been developed to linearly combine physical channels to produce fewer compressed virtual channels for reconstruction. A new channel compression technique via kernel principal component analysis (KPCA) is proposed. The proposed KPCA method uses a nonlinear combination of all physical channels to produce a set of compressed virtual channels. This method not only reduces the computational time but also improves the reconstruction quality of all channels when used. Taking the traditional GRAPPA algorithm as an example, it is shown that the proposed KPCA method can achieve better quality than both PCA and all channels, and at the same time the calculation time is almost the same as the existing PCA method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A dual-interpolator method for improving parallel MRI reconstruction;Magnetic Resonance Imaging;2022-10

2. Virtual Conjugate Coil for Improving KerNL Reconstruction;2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2022-07-11

3. Interpretable Dimension Reduction for MRI Channel Suppression;2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2022-07-11

4. Optimization of through‐time radial GRAPPA with coil compression and weight sharing;Magnetic Resonance in Medicine;2022-04-15

5. Group feature selection for enhancing information gain in MRI reconstruction;Physics in Medicine & Biology;2022-02-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3