Diagnosis of COVID-19 Disease in Chest CT-Scan Images Based on Combination of Low-Level Texture Analysis and MobileNetV2 Features

Author:

Yazdani Azita1ORCID,Fekri-Ershad Shervan23ORCID,Jelvay Saeed4ORCID

Affiliation:

1. Department of Health Information Management, Clinical Education Research Centre, Health Human Resources Research Centre, School of Health Management and Information Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

2. Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

3. Big Data Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran

4. Department of Health Information Technology, Abadan University of Medical Sciences, Abadan, Iran

Abstract

Since two years ago, the COVID-19 virus has spread strongly in the world and has killed more than 6 million people directly and has affected the lives of more than 500 million people. Early diagnosis of the virus can help to break the chain of transmission and reduce the death rate. In most cases, the virus spreads in the infected person’s chest. Therefore, the analysis of a chest CT scan is one of the most efficient methods for diagnosing a patient. Until now, various methods have been presented to diagnose COVID-19 disease in chest CT-scan images. Most recent studies have proposed deep learning-based methods. But handcrafted features provide acceptable results in some studies too. In this paper, an innovative approach is proposed based on the combination of low-level and deep features. First of all, local neighborhood difference patterns are performed to extract handcrafted texture features. Next, deep features are extracted using MobileNetV2. Finally, a two-level decision-making algorithm is performed to improve the detection rate especially when the proposed decisions based on the two different feature set are not the same. The proposed approach is evaluated on a collected dataset of chest CT scan images from June 1, 2021, to December 20, 2021, of 238 cases in two groups of patient and healthy in different COVID-19 variants. The results show that the combination of texture and deep features can provide better performance than using each feature set separately. Results demonstrate that the proposed approach provides higher accuracy in comparison with some state-of-the-art methods in this scope.

Funder

Abadan University of Medical Sciences

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3