Study of Instability Mechanism and Roof Caving Mode of Cementing Filling Stope: The Case Study of a Nonferrous Metal Mine in China

Author:

Zhong Min12ORCID,Yang Peng13,Hu Ying-Peng2ORCID

Affiliation:

1. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. School of Environment and Resources, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China

3. Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing 100101, China

Abstract

The downward layered cemented filling method, which is generally used in the mining of high-value metal mines with poor surrounding rock quality, is widely believed to not cause large-scale instability of the roof strata in the mining area. However, a nonferrous metal mine in northern China, which has been using the downward cemented filling method, suddenly suffered a violent collapse accident of the stope roof, and the surface is accompanied by significant subsidence on a large scale. The accident revealed that the roof collapse mechanism still needed further research. In this paper, field investigation and numerical simulation were combined to study the mechanism of roof collapse. Based on the input data including in-situ stress state, geological occurrence pattern, and mining steps, the particle flow code (PFC) was used to simulate the stress and displacement changes of the rock mass under mining disturbance. These results indicate that the failure process of the overlying rock mass can be divided into four stages due to the special geological conditions of the mine: pillar stability stage, pillar chain failure stage, roof filling caving stage, and gneiss plug settlement stage. In the early stage of mining, the pillars between the mined-out drifts could effectively support the overlying rock mass due to the small exposed roof. As more drifts were mined, the vertical pressure on the pillars was added. When the number of mining drifts reached five, one of the pillars was firstly destroyed due to overloading, and then the pressure of the overlying strata was transferred to the surrounding pillars, leading to the subsequent failure of other pillars. When pillars were damaged, arch caving appeared inside the roof filling material. Finally, the vertical shear resistance capacity of the gneiss mass above is insufficient, owing to the steeply dipping joints. Finally, the gneiss above was subject to sudden plug settlement along the vertical joints. It should be noted that the stope mining management of the mine has a significant impact on production safety. In order to ensure the stability of the stope formed by cemented filling method, the dense distribution of simultaneous mining drifts should be avoided and the mine-out areas should be backfilled in time.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3