Affiliation:
1. School of Software, South China Normal University, Guangzhou 510631, China
2. Engineering Research Center for Intelligent Robotics, Ji Hua Laboratory, Foshan 528200, China
Abstract
The human-machine interface (HMI) has been studied for robot teleoperation with the aim of empowering people who experience motor disabilities to increase their interaction with the physical environment. The challenge of an HMI for robot control is to rapidly, accurately, and sufficiently produce control commands. In this paper, an asynchronous HMI based on an electrooculogram (EOG) and a gyroscope is proposed using two self-paced and endogenous features, double blink and head rotation. By designing the multilevel graphical user interface (GUI), the user can rotate his head to move the cursor of the GUI and create a double blink to trigger the button in the interface. The proposed HMI is able to supply sufficient commands at the same time with high accuracy (ACC) and low response time (RT). In the trigger task of sixteen healthy subjects, the target was clicked from 20 options with ACC of 99.2% and RT 2.34 s. Furthermore, a continuous strategy that uses motion start and motion stop commands to create a certain robot motion is proposed to control a humanoid robot based on the HMI. It avoids the situation that combines some commands to achieve one motion or converts the certain motion to a command directly. In the home service experiment, all subjects operated a humanoid robot changing the state of a switch, grasping a key, and putting it into a box. The time ratio between HMI control and manual control was 1.22, and the number of commands ratio was 1.18. The results demonstrated that the continuous strategy and proposed HMI can improve performance in humanoid robot control.
Funder
National Natural Science Foundation of China
Subject
Health Informatics,Biomedical Engineering,Surgery,Biotechnology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献