A Human-Machine Interface Based on an EOG and a Gyroscope for Humanoid Robot Control and Its Application to Home Services

Author:

Wang Fan1ORCID,Li Xiongzi2ORCID,Pan Jiahui1ORCID

Affiliation:

1. School of Software, South China Normal University, Guangzhou 510631, China

2. Engineering Research Center for Intelligent Robotics, Ji Hua Laboratory, Foshan 528200, China

Abstract

The human-machine interface (HMI) has been studied for robot teleoperation with the aim of empowering people who experience motor disabilities to increase their interaction with the physical environment. The challenge of an HMI for robot control is to rapidly, accurately, and sufficiently produce control commands. In this paper, an asynchronous HMI based on an electrooculogram (EOG) and a gyroscope is proposed using two self-paced and endogenous features, double blink and head rotation. By designing the multilevel graphical user interface (GUI), the user can rotate his head to move the cursor of the GUI and create a double blink to trigger the button in the interface. The proposed HMI is able to supply sufficient commands at the same time with high accuracy (ACC) and low response time (RT). In the trigger task of sixteen healthy subjects, the target was clicked from 20 options with ACC of 99.2% and RT 2.34 s. Furthermore, a continuous strategy that uses motion start and motion stop commands to create a certain robot motion is proposed to control a humanoid robot based on the HMI. It avoids the situation that combines some commands to achieve one motion or converts the certain motion to a command directly. In the home service experiment, all subjects operated a humanoid robot changing the state of a switch, grasping a key, and putting it into a box. The time ratio between HMI control and manual control was 1.22, and the number of commands ratio was 1.18. The results demonstrated that the continuous strategy and proposed HMI can improve performance in humanoid robot control.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MAL-YOLO: a lightweight algorithm for target detection in side-scan sonar images based on multi-scale feature fusion and attention mechanism;International Journal of Digital Earth;2024-09-04

2. An In-Depth Exploration of AI and Humanoid Robotics' Role in Contemporary Healthcare;Advances in Medical Technologies and Clinical Practice;2024-05-10

3. Multifunctional robot based on multimodal brain-machine interface;Biomedical Signal Processing and Control;2024-05

4. Design of a charge-sensitive amplifier for MEMS piezoelectric hydrophone;Journal of Physics: Conference Series;2024-04-01

5. Dynamic tracking control of the humanoid robot joints based on sliding mode control;2022 IEEE 5th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC);2022-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3