Multiparametric Magnetic Resonance Imaging Information Fusion Using Graph Convolutional Network for Glioma Grading

Author:

Guo Peiying12ORCID,Li Longfei123,Li Cheng3,Huang Weijian3,Zhao Guohua2ORCID,Wang Shanshan3,Wang Meiyun24ORCID,Lin Yusong256ORCID

Affiliation:

1. School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China

2. Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, China

3. Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China

4. Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou 450003, China

5. School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou 450002, China

6. Hanwei IoT Institute, Zhengzhou University, Zhengzhou 450002, China

Abstract

Accurate preoperative glioma grading is essential for clinical decision-making and prognostic evaluation. Multiparametric magnetic resonance imaging (mpMRI) serves as an important diagnostic tool for glioma patients due to its superior performance in describing noninvasively the contextual information in tumor tissues. Previous studies achieved promising glioma grading results with mpMRI data utilizing a convolutional neural network (CNN)-based method. However, these studies have not fully exploited and effectively fused the rich tumor contextual information provided in the magnetic resonance (MR) images acquired with different imaging parameters. In this paper, a novel graph convolutional network (GCN)-based mpMRI information fusion module (named MMIF-GCN) is proposed to comprehensively fuse the tumor grading relevant information in mpMRI. Specifically, a graph is constructed according to the characteristics of mpMRI data. The vertices are defined as the glioma grading features of different slices extracted by the CNN, and the edges reflect the distances between the slices in a 3D volume. The proposed method updates the information in each vertex considering the interaction between adjacent vertices. The final glioma grading is conducted by combining the fused information in all vertices. The proposed MMIF-GCN module can introduce an additional nonlinear representation learning step in the process of mpMRI information fusion while maintaining the positional relationship between adjacent slices. Experiments were conducted on two datasets, that is, a public dataset (named BraTS2020) and a private one (named GliomaHPPH2018). The results indicate that the proposed method can effectively fuse the grading information provided in mpMRI data for better glioma grading performance.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3