An Image Segmentation Method Based on the Law of Universal Gravitation and Adaptive Affinity Propagation Spectrum Clustering

Author:

Lu Hua1,Zhu Jianrong2ORCID

Affiliation:

1. Changsha Vocational & Technical College, Changsha 410127, Hunan, China

2. Hunan University of Technology and Business, Changsha 410205, Hunan, China

Abstract

There are many problems of division in natural and social sciences, and with the development of science and technology, the requirement for division is also increasing. It is difficult to divide accurately by experience and expertise alone, and the most important research branch of the division problem is the clustering algorithm. It is to group similar samples into one class and divide the elements with large differences into different classes. Due to the simplicity and efficiency of the clustering algorithm, it is widely used in image segmentation. The conventional Spectral Clustering (SC) algorithm cannot recognize nonconvex data and has the disadvantage of strong dependence on biased parameter values. To address this problem, the Gravity-based Adaptive Spectral Clustering (GASC) algorithm is proposed in this study. Based on the conventional SC algorithm, the algorithm uses gravity to calculate the similarity (gravity) between data, and uses information entropy and adaptive enhancement (AdaBoost) algorithms to obtain the weights of correct cluster sampling points and wrong cluster sampling points in each cluster, so as to reduce the dependence of the algorithm on bias parameters and reduce the number of wrongly divided sample points. Meanwhile, the GASC algorithm is applied to image segmentation. The implementation process includes three stages: image preprocessing, feature extraction, and clustering. The comparison experiments show that the mean values of normalization and accuracy of the GASC algorithm are improved compared with other clustering algorithms, and the segmentation accuracy for images is higher.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on the clustering competition coevolution optimization framework under the parallel lion swarm optimization algorithm;Proceedings of the 2024 9th International Conference on Mathematics and Artificial Intelligence;2024-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3