Affiliation:
1. Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
2. Ineye Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610084, China
Abstract
Background. Dry eye disease (DED) is a multifactorial disease of the ocular surface, which affects the quality of life and work efficiency of affected patients. The traditional Chinese medicine formula Qiju Dihuang Pill (QJDHP) has a good therapeutic effect on DED. However, the pharmacological mechanism is not clear. Objective. To explore the mechanism of QJDHP in the treatment of DED based on network pharmacology. Method. The active components in QJDHP were screened in Traditional Chinese Medicine Systems Pharmacology (TCMSP), and putative molecular targets of QJDHP were identified using the SwissTargetPrediction database. DED-related targets were screened by GeneCards and OMIM. We established protein-protein interaction (PPI) and core targets and corresponding active compound network by Cytoscape to identify the core targets and main compounds of QJDHP against DED. DAVID database was utilized for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Molecular docking was used to evaluate the binding activity between key active compounds and core targets. Results. The results of network pharmacology showed that 253 targets of QJDHP were related to DED. PPI network analysis showed the 18 core targets. The binding affinity of docking results ranged from -5.7 to -9.3 kcal/mol, indicating a good docking effect. The results of GO enrichment analysis showed that the mechanism of QJDHP in the treatment of DED mainly involved biological processes such as apoptosis, oxidative stress, response to estrogen, angiogenesis, and the regulation of transcription factors. KEGG analysis showed that QJDHP may be regulated by the TNF signaling pathway, Toll-like receptor signaling pathway, MAPK signaling pathway, and estrogen signaling pathway in the treatment of DED. Conclusion. In this study, we demonstrated the multicomponent, multitarget, and multichannel action mechanism of QJDHP in the treatment of DED and provided a foundation for further drug development research.
Funder
National Natural Science Foundation of China
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献