An Efficient Middle Layer Platform for Medical Imaging Archives

Author:

Ergüzen Atilla1ORCID,Erdal Erdal1ORCID

Affiliation:

1. Department of Computer Engineering, Kırıkkale University, 71450 Kırıkkale, Turkey

Abstract

Digital medical image usage is common in health services and clinics. These data have a vital importance for diagnosis and treatment; therefore, preservation, protection, and archiving of these data are a challenge. Rapidly growing file sizes differentiated data formats and increasing number of files constitute big data, which traditional systems do not have the capability to process and store these data. This study investigates an efficient middle layer platform based on Hadoop and MongoDB architecture using the state-of-the-art technologies in the literature. We have developed this system to improve the medical image compression method that we have developed before to create a middle layer platform that performs data compression and archiving operations. With this study, a platform using MapReduce programming model on Hadoop has been developed that can be scalable. MongoDB, a NoSQL database, has been used to satisfy performance requirements of the platform. A four-node Hadoop cluster has been built to evaluate the developed platform and execute distributed MapReduce algorithms. The actual patient medical images have been used to validate the performance of the platform. The processing of test images takes 15,599 seconds on a single node, but on the developed platform, this takes 8,153 seconds. Moreover, due to the medical imaging processing package used in the proposed method, the compression ratio values produced for the non-ROI image are between 92.12% and 97.84%. In conclusion, the proposed platform provides a cloud-based integrated solution to the medical image archiving problem.

Funder

Kırıkkale University Department of Scientific Research Projects

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Noninvasive quantitative ultrasound fatty liver evaluation of hepato-renal index in pediatric patients using 3D-slicer;Journal of Medical Imaging and Interventional Radiology;2024-06-03

2. Interactive Simulation and E-Learning Platforms for Diagnostic Radiography Education;Handbook of Research on Advancing Equity and Inclusion Through Educational Technology;2023-08-09

3. Novel encoder for ambient data compression applied to microcontrollers in agricultural robots;International Journal of Agricultural and Biological Engineering;2022

4. Huffman-based lossless image encoding scheme;Journal of Electronic Imaging;2021-09-11

5. A Survey Study of Diseases Diagnosed Through Imaging Methodology Using Ultrasonography;Lecture Notes in Electrical Engineering;2020-10-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3